
Abstract- In this paper we present results of the equivalent brain 
and skull resistivities (ρρρρbrain and ρρρρskull) for 6 different subjects 
using 2 different and independent procedures: an EIT based 
method and the combined analysis of SEF/SEP data. With the 
EIT based method known currents are injected into the head 
and the resulting potential distributions are recorded from scalp 
electrodes. The conductivities are estimated by fitting the 
conductivity parameters of a 3-sphere head model onto the 
measured potentials. With the combined SEP/SEF method, a 
current source is activated inside the brain using a nervous 
medianus stimulation. The MEG data is used to determine 
dipole position and tangential orientation, whereas the 
simultaneously recorded EEG data is used to find the dipole 
radial component and the electrical conductivities of the brain 
and the skull. 
 The results show a large variability in the ratio of skull and 
brain conductivities ρρρρskull/ρρρρbrain over subjects. However, a strong 
agreement was found between the results of EIT and SEF/SEP 
methods even though they are quite different, both in theoretical 
and technical terms. 
 These results indicate that generic conductivity values will 
result in large systematic errors of EEG inverse modelling. 
However, the good agreement between the EIT and the 
SEP/SEF method indicates that the individual’s ρρρρskull/ρρρρbrain ratio 
can reliably be determined using the EIT method. 
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I. INTRODUCTION 

 

The Inverse Problem (IP) [1] of EEG aims to determine the 
sources inside the brain that best explain the electrical 
potentials measured on the surface of the scalp. The 
determination of the sources is made through the use of 
mathematical models, which describe the head as an 
electrical conductor. In this way, the knowledge of the 
electrical conductivities of the tissues of the head must be 
known a priori and it is known that the solution to the EEG IP 
is highly dependent on the values taken for these parameters 
[2],[3],[4]. The first attempts to measure the electrical 
conductivities of the tissues were made “in vitro” and often 
using animal tissue sample. These measurement procedures 
suffer from large systematic errors. As a consequence, the 
values presented in literature for the electrical conductivities 
show a wide range of variation and there might be a factor of 
7 between the minimum and maximum conductivity values 
reported for a certain tissue [5]. Recently, several studies 
have been performed to try to estimate “in vivo” the electrical 
conductivities of several head structures. Some approaches 
like the one in [6] use the Boundary Element Method (BEM) 
and realistic head models to estimate the equivalent electrical 
resistivities of brain, skull and skin. Other approaches like in 
[7] use of the combined analysis of MEG and EEG data to 
estimate the electrical conductivities as well as the source 
parameters. In this paper it was chosen to use spherical 
models to avoid obtaining biased estimations of the 
resisitivities since the accuracy of the BEM depends on the 

values of ρskull/ρbrain as well as on the node distribution among 
the head compartments. The SEF/SEP analysis presented here 
differs from the one in [7] in that MEG and EEG data are 
analysed using separate mathematical models, decreasing the 
complexity of the computations. 

 
II. METHODOLOGY 

 
A. Head Models 

 
The spherical model is defined in two different ways. In 

the default model, a sphere is fitted to the grid of electrodes 
used in each subject and taken as the description of the skin. 
The radii of the two spheres describing the skull and the brain 
are respectively equal to 0.92 Rskin and 0.87 Rskin, where Rskin 
is the radius of the sphere describing the skin. The same 
relative skull thickness (r.s.t), equal to 0.05, is taken for all 
subjects. 

In the individual model instead of taking the factors 0.92 
and 0.87 for all subjects, these parameters are adjusted for 
each subject by fitting a set of concentric spheres to their 
realistic model, therefore adjusting the r.s.t. for each subject. 

The approximation ρbrain=ρskin is made. 
 

B. Methods 
 
The theoretical basis for the EIT method, using the 

spherical models for the head has already been described in 
[8].  

In the SEF/SEP method the analysis is performed in 2 
steps: 

 
1. The sources, which best explain the recorded 

magnetic N20 data in the time samples around the 
latency of the response are computed with the single 
dipole model. Therefore both the positions and the 
tangential components become known parameters; 

2. EEG data is used to compute the radial 
components of the dipoles as well as the brain electrical 
conductivity and the brain to skull conductivity ratio. 
Since both the dipole’s positions and tangential 
components are already known the parameters 
aforementioned remain the only unknowns to be 
determined. 

 
The potential iΨ  measured on a sensor i located at ir
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 is the dipole position at time instant j; 
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The IP is defined as the computation of the parameters 
R

jM , ρbrain and σskull/σbrain that best explain the electrical 

potentials measured on the scalp. If the potential measured on 
a certain sensor i at time instant j is considered, then the 

difference between measured ( ijΨ ) and predicted ( ij

~Ψ ) 

potential is expressed as: 
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where i and i' run over the total number of measuring 

sensors, j runs over the number of time samples analysed and 

iiC ′  is the spatial covariance [9] between EEG channels i and 

i'. Although σskull/σbrain must be estimated using non-linear 
minimisation procedures, R

jM  and ρbrain are in principle 

determined by exact expressions because they are linear 
parameters. 

 
C. Data Acquisition 

 
Data from 6 normal subjects was acquired using the 

Omega MEG/EEG system (CTF Systems Inc.). Data for the 
SEF/SEP analysis was obtained from the stimulation of the 
median nerve using an electrical current. The frequency of 
the stimulus was set at 2 Hz and its duration was 0.2 ms. 
Current intensity ranged from 2.5 to 12 mA. After the onset 
of the stimulus, MEG and EEG data were recorded 
simultaneously at a rate of 1250 Hz, using 151 MEG 
channels and 64 EEG channels, with the electrodes 
positioned according to the extended 10-20 system. Data was 
filtered on-line with an anti-aliasing low-pass filter at 400 Hz 
and off-line using a low-pass filter at 300 Hz and a high-pass 
filter at 5 Hz. In order to improve the signal-ratio 500 to 700 
artifact-free epochs of 0.4 seconds had to be averaged. 

The acquisition of data for EIT analysis was made using 
the aforementioned EEG system with the electrodes 
positioned according to the extended 10-20 system. Current 
was injected on a pair of electrodes measuring the potential 

distribution on the remaining sensors, this procedure being 
repeated for several injection pairs. The injection electrodes 
were positioned with a maximum separation between them, 
and the reference electrode located approximately halfway 
between injection and extracting electrodes to decrease the 
effects of local variations of the skull conductivity on the 
results. The injection-extraction electrode pairs were chosen 
to cover the whole perimeter of the head. 

The current generator produced a 60 Hz sinusoidal 
electrical current of 10 µA rms. Data was acquired at a rate of 
1250 Hz, using on-line high and low-pass filters at 0.16 Hz 
and 300 Hz respectively. For each injection pair, epochs of 
105 seconds were recorded. 

 
III. RESULTS 

 
The results obtained with the spherical model, both with 

default and fitted head model are represented in Tables I and 
II. 

 
TABLE I 

Results obtained with EIT and SEF/SEP, default r.s.t. (ratio=ρskull/ρbrain) 
EIT method 

 
SEF/SEP Method 

 
 

Sub ρbrain 
(Ω.cm) 

ρskull 
(Ω.cm) 

ratio ρbrain 
(Ω.cm) 

ρskull 
(Ω.cm) 

ratio r.s.t. 

1 440 13300 30 175 7441 43 0.05 
2 245 30800 127 − − − 0.05 
3 280 26900 96 280 24000 86 0.05 
4 295 20000 68 250 16300 65 0.05 
5 245 16100 66 250 18600 74 0.05 
6 330 15200 46 210 13900 66 0.05 

 
 
 

TABLE II 
Results obtained with EIT and SEF/SEP, individual r.s.t. 

(ratio=ρskull/ρbrain) 
EIT method 

(individual r.s.t.) 
SEF/SEP Method 
(individual r.s.t.) 

 

Sub ρbrain 
(Ω.cm) 

ρskull 
(Ω.cm) 

ratio ρbrain 
(Ω.cm) 

ρskull 
(Ω.cm) 

ratio r.s.t. 

1 400 5400 14 169 4497 27 0.12 
2 216 10180 47 − − − 0.13 
3 210 14000 67 278 18394 66 0.10 
4 264 7300 28 265 11515 43 0.13 
5 215 10300 48 248 14478 58 0.08 
6 250 6000 24 209 9461 45 0.12 

 
The observation of the tables above shows that in general 

the results given by both methods are in agreement (Fig. 1), 
in particular with respect to the values of ρskull/ρbrain. The 
results using the SEF/SEP method are not presented for 
subject 2 since in this case no useful EEG response was 
recorded. For subjects 1 and 6, the agreement between the 
absolute values of the resisitivities is not as good as for the 
other subjects. However for these two subjects, the values of 
ρskull/ρbrain given by EIT and SEF/SEP are not as similar as for 
the other subjects and therefore larger differences in the 
absolute values of the resistivities are more likely to appear. 
In both methods, and particularly for the EIT model, the 
difference between the results obtained using the default and 
individual r.s.t. lies mainly in the estimations for the skull 
resistivity. In fact the values of ρskull obtained using the fitted 



r.s.t. come afected by a factor which is approximately equal 
to (individual r.s.t)/(default r.s.t.), meaning that both methods 
have the ability to compensate for changes in the geometry. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Comparison between the values of σbrain/σskull, given by EIT and 
SEF/SEP using both the default (Def) and individual (Fit) r.s.t.. For 

comparison, the identity line (x=y) is also represented. 
 
 
 

IV. DISCUSSION 
 

The results obtained with the present work show the ability 
of the described methods to compute “in vivo” the equivalent 
resistivities of brain, skull and skin. Furthermore, both 
methods show the ability to compensate for geometrical 
variations of the head model, particularly the skull thickness, 
by adjusting the estimation of the skull resistivity 
accordingly. In this way, the computed electrical parameters 
may not necessarily be coincident with the true values but 
they are the ones which best compensate for errors being 
committed in the geometry of the head, being this what is 
desirable to have when dealing with EEG modelling. 

The variability of ρskull/ρbrain was clearly confirmed by two 
different and independent methods. Although part of this 
variability might be explained by the systematic errors of the 
head model, it is also true that especially the skull structure is 
very complex [10] and variations in its characteristics from 
subject to subject are very likely to occur. The use of realistic 
models in future studies will clarify the source of variation 
since the geometrical errors will be corrected. 

 
V. CONCLUSION 

 
The results obtained in this study clearly show that there is 

indeed a source of variation in the equivalent electrical 
properties of the head compartments to be accounted for. In 
this sense, a method should be used to compute the 
equivalent electrical properties “in vivo” for each subject. We 
think that in particular the presented EIT method not only has 
the ability to fulfil this goal but also requires technical 
conditions usually available in any EEG laboratory. 
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